你的位置:首頁 > 電源管理 > 正文

                                        低噪聲Silent Switcher模塊和LDO穩壓器有助于改善超聲噪聲和圖像質量

                                        發布時間:2022-06-09 來源:ADI 責任編輯:wenwei

                                        【導讀】本文將簡要介紹超聲成像系統進行,并詳細分析超聲電源管理設計方面的一些挑戰和解決方案。文中主要討論了4個設計考慮因素:系統噪聲電平、開關噪聲、電磁干擾(EMI),以及與其電源相關的超聲散熱。本文還將說明Silent Switcher?模塊和低噪聲LDO技術如何幫助解決常見的問題并改善系統噪聲,提高圖像質量。


                                        簡介


                                        自2000年(GE)首次推出數字超聲技術以來,超聲市場發展迅速。超聲技術已從基于靜態轉向動態,并從黑白轉向彩色多普勒。隨著超聲應用越來越多,對組件的要求也不斷提高,例如與探頭、AFE和電源系統相關的要求。


                                        在醫療診斷領域,越來越多的應用需要超聲成像系統輸出更高的圖像質量。提高圖像質量的關鍵技術之一是提高系統的信噪比(SNR)。下文將討論影響噪聲的不同因素,特別是電源。


                                        超聲的工作原理是什么?


                                        超聲系統由換能器、發射電路、接收電路、后端數字處理電路、控制電路和顯示模塊等組成。數字處理模塊通常包含現場可編程門陣列(FPGA),FPGA根據系統的配置和控制參數生成發射波束成形器及相應的波形圖案。然后,發射電路中的驅動和高壓電路生成高壓信號來激勵超聲換能器。超聲換能器通常采用PZT陶瓷制成。換能器將電壓信號轉換為超聲波進入人體,同時接收人體組織產生的回波?;夭ㄞD換成小電壓信號,并傳輸至發射/接收(T/R)開關。T/R開關的主要目的是防止高壓發射信號損壞低壓接收模擬前端。模擬電壓信號經過信號調理、放大和濾波后,傳輸至AFE的集成ADC,然后轉換成數字數據。數字數據通過JESD204B或LVDS接口發射到FPGA進行接收波束成形,然后發射到后端數字部分進一步處理,從而創建超聲圖像。


                                        1653909039978826.png

                                        圖1.超聲系統方框圖。


                                        電源如何影響超聲系統?


                                        從上述超聲架構來看,系統噪聲會受到許多因素的影響,如發射信號鏈、接收信號鏈、TGC增益控制、時鐘和電源。在本文中,我們將討論電源如何影響噪聲。


                                        超聲系統提供不同類型的成像模式,每種成像模式對動態范圍有不同的要求。這也意味著,SNR或噪聲要求取決于不同的成像模式。黑白模式需要70 dB動態范圍,脈沖波多普勒(PWD)模式需要130 dB,連續波多普勒(CWD)模式需要160 dB。對于黑白模式,本底噪聲非常重要,它會影響在遠場能夠看到的最小超聲回波的最大深度,也就是穿透性,這是黑白模式的關鍵特性之一。對于PWD和CWD模式,1/f噪聲尤為重要。PWD和CWD圖像均包括1 kHz以下的低頻譜,相位噪聲會影響1 kHz以上的多普勒頻譜。由于超聲換能器頻率通常為1 MHz至15 MHz,因此該范圍內的任何開關頻率噪聲都會對其造成影響。如果PWD和CWD頻譜(從100 Hz至200 kHz)中存在互調頻率,多普勒圖像中將會出現明顯的噪聲頻譜,這在超聲系統中是不可接受的。


                                        另一方面,通過考慮相同的因素,良好的電源可改善超聲圖像。設計人員為超聲應用設計電源時,應了解多個因素。


                                        開關頻率


                                        如前所述,必須避免將意外的諧波頻率引入采樣頻帶(200 Hz至100 kHz)。在電源系統中,很容易找到此類噪聲。


                                        大多數開關穩壓器使用電阻來設置開關頻率。該電阻的誤差會在PCB上引入不同的開關標稱頻率和諧波。例如,在400 kHz DC/DC穩壓器中,1%精度電阻提供±1%誤差和4 kHz諧波頻率。更好的解決方案是選擇具有同步功能的電源轉換開關。外部時鐘將通過SYNC引腳向所有穩壓器發送信號,使所有穩壓器切換到相同頻率和相同相位下工作。


                                        此外,出于EMI考量或更高的瞬態響應,一些穩壓器具有20%的可變開關頻率,這會導致400 kHz電源中產生0 kHz至80 kHz諧波頻率。恒頻開關穩壓器有助于解決這一問題。ADI的Silent Switcher電源穩壓器和電源模塊系列具有恒定頻率開關功能,同時在不開啟擴頻的情況下,仍保持出色的EMI性能,以及出色的瞬態響應。


                                        白噪聲


                                        超聲系統中也有許多白噪聲源,這會導致超聲成像中出現背景噪聲。該噪聲主要來自信號鏈、時鐘和電源。


                                        現在,在模擬處理組件的模擬電源引腳添加LDO穩壓器是常見的做法。ADI的下一代LDO穩壓器具有大約1 μV rms的超低噪聲,涵蓋200 mA至3 A的電流。電路和規格參數如圖2和圖3所示。


                                        2.png

                                        圖2.下一代低噪聲LDO穩壓器。


                                        1653909017708934.png

                                        圖3.下一代LT3073的低噪聲譜密度。


                                        PCB布局


                                        在設計超聲系統中的數據采集板時,通常需要考慮高電流電源部分和高度敏感的信號鏈部分之間的權衡。開關電源產生的噪聲很容易耦合到信號路徑走線中,并且很難通過數據處理去除。開關噪聲通常由開關輸入電容(圖4)以及上側或下側開關生成的熱回路產生。添加緩沖電路可幫助管理電磁輻射;但同時也會降低效率。即使在高開關頻率下,Silent Switcher架構也有助于提高EMI性能,并保持高效率。


                                        手持式數字探頭


                                        除了因吸收超聲而引起的發熱,換能器本身的溫度對換能器附近組織的溫度影響很大。通過向換能器施加電信號,可生成超聲脈沖。一些電能在元件、鏡頭和基底材料中耗散,導致換能器發熱。此外,對換能器頭中收到的信號進行電子處理也可能會產生電熱。從換能器表面排出熱量會使表面組織的溫度升高幾攝氏度。IEC標準60601-2-37(2007版)中指定了最大容許換能器表面溫度(TSURF)。1當換能器信號發射到空氣中時,最大容許換能器表面溫度為50°C;當發射到合適的假體時,該溫度為43°C。后一項限制意味著,皮膚溫度(通常為33°C)最高可升高10°C。在復雜的換能器中,換能器發熱是重要的設計考量,在一些情況下,這些溫度限制可能會有效約束能夠達到的聲輸出。


                                        當換能器在空氣中運行時,安全標準IEC 60601-2-37(2007版)1將換能器表面的溫度限制到50°C以下,當換能器在33°C(對于外部應用的換能器)或37°C(對于內部換能器)與假體接觸時,該標準將其表面溫度限制到43°C以下。通常這些溫度限制(而不是對波束中最大強度的限制)約束了換能器的聲輸出。Silent Switcher設備將功率(具有最高3 MHz的寬開關帶寬)轉換到數字探頭的不同電壓域的效率最高。這意味著,功率轉換期間的功率損耗很低。這對冷卻系統大有幫助,因為沒有太多額外功率以熱量形式損耗。


                                        Silent Switcher模式大有幫助


                                        Silent Switcher模塊技術是進行超聲電源軌設計的明智選擇。引入該模式是為了幫助改善EMI和開關頻率噪聲。傳統上,我們應該關注每個開關穩壓器的熱回路上的電路和布局設計。對于降壓電路,如圖4所示,熱回路包含輸入電容、頂部MOSFET、底部MOSFET,以及由走線、路由、邊界(bounding)等引起的寄生電感。


                                        Silent Switcher模塊主要提供兩種設計方法:


                                        第一,如圖4和圖5所示,通過創建對立的熱回路,由于雙向輻射,大多數EMI將減少。通過該方法,將優化近20 dB。


                                        1653908997268534.png

                                        圖4.拆分熱回路的原理圖。


                                        1653908986390321.png

                                        圖5.比較靜音開關和非靜音開關EMI性能。


                                        第二,如圖6所示,Silent Switcher模塊不是直接在芯片周圍焊接,而是采用銅柱倒裝芯片封裝,有助于減少寄生電感,優化尖峰和死區時間。


                                        6.jpg

                                        圖6.與傳統綁定技術(LT8610)相比較的銅柱倒裝芯片封裝及其性能(LT8614)。


                                        此外,如圖7所示,Silent Switcher技術提供高功率密度設計,并且能夠在小封裝中實現大電流能力,從而保持低θ JA,實現高效率(例如, LTM4638 能夠在6.25 mm × 6.25 mm × 5.02 mm封裝中實現15 A)。


                                        7.jpg

                                        圖7.Silent Switcher電源模塊封裝內視圖。


                                        表1.Silent Switcher模塊概覽

                                        1653908953354806.png


                                        表2.熱門Silent Switcher產品

                                        1653908940915622.png


                                        此外,許多Silent Switcher模塊也具有固定頻率、寬頻率范圍和峰值電流架構,從而實現低抖動和快速瞬態響應。該產品系列中的熱門產品參見表2。


                                        結論


                                        ADI的Silent Switcher電源模塊和LDO產品為超聲電源軌設計提供了完整的解決方案,盡可能減少了系統噪聲電平和開關噪聲。這有助于改善圖像質量,而且有助于限制溫度升高,并簡化PCB布局設計復雜性。


                                        參考電路


                                        1 IEC標準60601-2-37。2007。



                                        免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯系小編進行處理。


                                        推薦閱讀:


                                        如何化解第三代半導體的應用痛點

                                        如何測量運算放大器的輸入電容以盡可能降低噪聲

                                        采用MP188XX隔離式柵極驅動器系列構建電源系統

                                        異步DC-DC升壓轉換器(包含續流二極管)還能實現低輻射嗎?

                                        25 kW SiC直流快充設計指南(第三部分):PFC仿真

                                        特別推薦
                                        技術文章更多>>
                                        技術白皮書下載更多>>
                                        熱門搜索
                                        ?

                                        關閉

                                        ?

                                        關閉

                                        国产精品亚洲АV无码播放|久久青青|老熟妇仑乱视频一区二区|国产精品经典三级一区|亚洲 校园 春色 另类 激情